Math 261
 Fall 2023

Lecture 27

Class QZ 12
find $S^{\prime}(x)$ Do not Simplify

1) $f(x)=\left(x^{4}-4 x^{2}\right)^{8} \quad f^{\prime}(x)=3\left(x^{4}-4 x^{2} \cdot\left(4 x^{2}-8 x\right)\right.$
2) $f(x)=\cos (\sqrt{x}) \quad f^{\prime}(x)=\sin (\sqrt{x}) \cdot \frac{1}{\cos x}$
3) $x^{4}-y^{2}=8 x$ where $y=f(x)$ $4 x^{3}-2 y \frac{d y}{d x}=8 \quad 4 x^{3}-8=2 y \frac{d y}{d x} \quad \frac{d y}{d x}=\frac{4 x^{3}-8}{2 y}$

Find $\frac{d y}{d x}$ where $y=f(x)$

$$
\begin{aligned}
& x^{2} y+x y^{2}=x y \\
& \frac{d}{d x}\left[x^{2} y\right]+\frac{d}{d x}\left[x y^{2}\right]=\frac{d}{d x}[x y] \\
& \left.2 x y+\sqrt{2} \frac{d y}{d x}\right]+1 \cdot y^{2}+\left(x \cdot 2 y \cdot \frac{d y}{d x}=1 \cdot y\left[+x \cdot \frac{d y}{d x}\right]\right. \\
& \left.\left.\left(x^{2}\right) \frac{d y}{d x}+2 x y\right) \frac{d y}{d x}-x\right) \frac{d y}{d x}=y-y^{2}-2 x y \\
& \left(x^{2}+2 x y-x\right) \frac{d y}{d x}=y-y^{2}-2 x y \\
& \frac{d y}{d x}=\frac{y-y^{2}-2 x y}{x^{2}+2 x y-x}=\frac{-y(y+2 x-1)}{\underbrace{x(x+2 y-1)}} \\
& x \neq 0, x+2 y+1
\end{aligned}
$$

Find $\frac{d y}{d x}$ where $y=f(x)$

$$
\begin{aligned}
x^{2} y+x y^{2} & =x y \\
x y(y+x) & =x y \\
y+x & =1 \\
\frac{d y}{d x}+1 & =0-\infty \frac{d y}{d x}=-1
\end{aligned}
$$

Find $\frac{d y}{d x}$ where $y=f(x)$ for $x=\sin y$

$$
\begin{aligned}
& x=\sin y \\
& \frac{d}{d x}[x]=\frac{d}{d x}[\sin y] \\
& 1=\cos y \cdot \frac{d y}{d x} \\
& \frac{d y}{d x}=\frac{1}{\cos y}=\sec y
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x} & {\left[\left(f\left(x^{3}\right)\right)^{2}\right] } \\
& =2\left(f\left(x^{3}\right)\right)^{2-1} \cdot f^{\prime}\left(x^{3}\right) \cdot 3 x^{2} \\
& =6 x^{2} \cdot f\left(x^{3}\right) \cdot f^{\prime}\left(x^{3}\right)
\end{aligned}
$$

Oct 16-10:48 AM

Linear Approximation $\quad f(x) \approx f(a)+f^{\prime}(a)(x-a)$
Estimate $(2.1)^{4} \approx 2_{1}^{4}=16 \quad \nabla$ Near $x=2$

$$
\begin{array}{ll}
f(x)=x^{4} & f(2)=2^{4}=16 \\
a=2 & f^{\prime}(x)=4 x^{3} \\
& f^{\prime}(2)=4(2)^{3}=32
\end{array}
$$

$$
2.1^{4} \approx 19.4481
$$

$$
\begin{aligned}
&(f(x) \approx f(a)+f^{\prime}(a)(x-a) \\
& x^{4} \approx 16+32(x-2) \\
& \text { Suppose } x=2.1 \\
& 2.1^{4} \approx 16+32(2.1-2) \\
& 2.1^{4} \approx 16+32(.1) \\
&=16+3.2 \\
&=19.2
\end{aligned}
$$

close to each other
use linear approximation to
estimate $\sqrt{26}$

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

$$
\begin{aligned}
& \sqrt{26} \approx \sqrt{25} \approx 5 \quad \sqrt{x} \approx 5+\frac{1}{10}(x-25) \\
& \begin{aligned}
f(x)=\sqrt{x} \quad & f(25)=\sqrt{25}=5 \\
a=25 \quad & f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \quad \sqrt{26} \approx 5+\frac{1}{10}(26-25) \\
& f^{\prime}(25)=\frac{1}{2 \sqrt{25}}=\frac{1}{10} \quad \approx 5+\frac{1}{10} \cdot(1) \\
\text { Use Your Call } & \approx 5+.1
\end{aligned}
\end{aligned}
$$

use Your Call

$$
\sqrt{26} \approx 5.0990 \ldots \sqrt{26} \approx 5.1
$$

Oct 16-11:04 AM

Use linear Approximation to

$$
\begin{aligned}
& \text { estimate } \sin 31^{\circ} \text {. } \\
& \operatorname{Sin} 31^{\circ} \approx \operatorname{Sin} 30^{\circ}=\frac{1}{2} \\
& f(x)=\operatorname{Sin} x \\
& a=30^{\circ} \quad f\left(30^{\circ}\right)=\sin 30^{\circ}=\frac{1}{2} \\
& f^{\prime}(x)=\cos x \quad \hookleftarrow 180^{\circ}=\pi \mathrm{Rad} \\
& f^{\prime}\left(30^{\circ}\right)=\cos 30^{\circ}=\frac{\sqrt{3}}{2} \quad 1^{\circ}=\frac{\pi}{180} \\
& \sin 31^{\circ} \approx \frac{1}{2}+\frac{\sqrt{3}}{2}\left(31^{\circ}-30^{\circ}\right) \\
& \begin{aligned}
=\frac{1}{2}+\frac{\sqrt{3}}{2}\left(7^{0}\right)=\frac{1}{2}+\frac{\sqrt{3}}{2}\left(\frac{\pi}{80}\right) & =\frac{1}{2}+\frac{\pi \sqrt{3}}{360} \\
& \approx .515
\end{aligned} \\
& \text { use your call. } \\
& \text { to find } \sin 31^{\circ}=.515
\end{aligned}
$$

Use linear approximation
To estimate $\tan 46^{\circ}$.

$$
\begin{aligned}
& \tan 46^{\circ} \approx \tan 45^{\circ}=1 \\
& f(x)=\tan x \quad f\left(45^{\circ}\right)=\tan 45^{\circ}=1 \\
& a=45^{\circ} \quad f^{\prime}\left(45^{\circ}\right)=\sec ^{2} 45^{\circ}=2 \\
& f^{\prime}(x)=\sec ^{2} x \quad f(x) \approx f(a)+f^{\prime}(a)(x-a) \\
& \tan x \approx 1+2\left(x-45^{\circ}\right) \\
& \tan 40^{\circ} \approx 1+2\left(46^{\circ}-45^{\circ}\right) \\
& \text { Now use Your case } \\
& \text { to find } \\
& \approx 1+2 \cdot 1^{0} \\
& \tan 46^{\circ} \approx 1.036 \\
& =1+2 \cdot \frac{\pi}{180} \\
& =1+\frac{\pi}{90} \approx 1.035
\end{aligned}
$$

Oct 16-11:18 AM

Near $x=a \quad f(x) \approx f(a)+f^{\prime}(a)(x-a)$ $y \approx f(x)$

Linear Approximation Sse 123

